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A theoretical investigation of the pulse technique has been carried out using typical 
reaction models (irreversible, reversible, and consecutive reactions) and the conversion 
of reactants and the yield of products were compared with those from the continuous 
flow technique. In the case of linear reactions with no other rate process than first order, 
even if they are reversible or consecutive, the results from the pulse technique are in 
agreement with those from the flow technique, while in the case of nonlinear reactions 
there is a quite remarkable disagreement. In the reversible reactions of A $2R and 
A ti R + S the conversion is above that from the flow technique, and in the consecutive 
reactions such as A + B -+ R, R + B --* S, and A + R, 2R -+ S, the yield of the 
intermediate product, R, is larger than that from the flow technique. The results on the 
nth order irreversible reaction are equivalent to that from the flow technique in the case 
of a rectangular pulse only. Main factors peculiar to the pulse technique are discussed. 
The results from the pulse technique vary greatly with the inlet pulse width as well as 
with the different adsorption strengths of components on a catalyst, but the difference 
in the results is relatively small for rectangular, triangular, and error function pulses. 
Furthermore, a method of measurement of kinetic parameters by the pulse technique is 
proposed for .the several reaction models. 

The pulse technique, in which small 
amounts of reactant are injected into a 
carrier gas stream before the gas enters a 
reactor packed with a small amount of 
catalyst, is proving of great use in the 
study of heterogeneous catalytic reactions. 
It is easily expected on the analogy of the 
pulse technique with the gas chroma- 
tographic one that components may be 
separated from others in a catalyst bed ac- 
cording to the different adsorption strengths 
on the catalyst. Complications arising from 
the separation of components make funda- 
mental analysis of the reaction kinetics in 
the pulse technique extremely difficult in 
contrast to the tlow technique. 

Some attempts have been made to disclose 
the kinetic characteristics of the pulse 
technique. Simple consideration by Bassett 
and Habgood (1) showed that the pulse 
reaction kinetics for the first order irreversi- 
ble reaction is in agreement with the 
continuous flow one, as was confirmed 

rigidly by Roginskii et al. (2) and was 
proved experimentally by Schwab and 
Watson (3) for the dehydrogenation of 
methanol on a silver catalyst. Gasiev 
et al. (4) analyzed theoretically irreversible 
reactions with zero, first, and second order 
kinetics in the case of a rectangular or a 
triangular pulse of reactant and considered 
that the reverse reaction is negligible 
because the products are separated from 
each other, and that reversible reactions 
can be treated just as irreversible ones. The 
dehydrogenation of cyclohexane was studied 
on the basis of such a conception. 

The separation of products, however, 
should be incomplete except in the case of a 
pulse without width, so the reverse reaction 
generally may not be negligible. A more 
practical analysis of the reversible reaction 
of Ati R + S was made by Magee (5) 
using an analog computer, the result of 
which showed that the reaction can proceed 
beyond its equilibrium conversion on the 
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assumption that the chemical equilibrium 
is established instantaneously. 

In all of these publications, however, the 
reaction models treated are limited to a few, 
and the basic assumptions are too simple. 
In the present work the pulse reaction 
kinetics of the typical reaction models are 
analyzed mathematically under more real 
assumptions either using a digital computer 
or not. The effects of the shape of inlet pulse, 
the separation of components in a catalyst 
bed, and the spreading of product pulses 
are discussed. 

Results demonstrate the applicability of 
the pluse technique to precise studies of 
kinetics for the several reaction models. A 
later study using the pulse technique has 
been made on the catalytic cracking and 
disproportionation of cumene and is re- 
ported in the following paper (7). 

NOMENCLATURE 

ci Concentration of component i 
in gas phase (mole/cm3 of 
bed) 

CA0 Maximum concentration of in- 

CA0 
let pulse (mole/cm3 of bed) 

Average initial concentration 
defined by Eq. (27) (mole/ 
cm3 of bed) 

k Reaction rate constant 
K Equilibrium constant 
Ki Adsorption equilibrium con- 

stant of component i 
L Length of catalyst bed (cm) 
ri Rate of formation of component 

i (mole/cm3 set) 
t Time (secj 
to Pulse width defined by Eq. (8) 

bet> 
u Moving velocity of carrier gas 

down catalyst bed (cm/set) 
ui Characteristic moving velocity 

of component i down catalyst 
bed (cm/set) 

V Ratio of characteristic moving 
velocity, us/u~~ 

X Conversion of reactant 
X,, Xt, X, Conversion in the case of a 

rectangular, a triangular, and 
an error function pulse 

Xf 

Yi 
z 

lli 

8, BL 

ei, eiL 

7 

70 

cp 

Conversion in the flow tech- 
nique 

Yield of component i 
Distance down catalyst bed 

(4 
Dimensionless concentration of 

if Ci/C*O 
Residence time of carrier gas, 

z/u, L/u (set) 
Residence time of Component 

i, Z/U<, L/Ui (see) 
Dimensionless time, t(v - l)/ 

eAL 

Dimensionless pulse width, 
tOpAL 

Dimensionless concentration 
profiles of inlet pulse 

METHOD OF MATHEMATICAL ANALYSIS 

The assumptions inherent in the present 
paper are as follows: (1) All components of 
reactants and products move as a plug flow 
of linear velocity u together with a carrier 
gas, (2) Influence of mass transfer onto 
catalyst surface is negligible. (3) Linear 
adsorption equilibrium is established be- 
tween gas phase and catalyst surface.* 
(4) The catalyst bed is isothermal. 

The differential equation expressing the 
mass balance within the reactor is 

8Ci ac, 
dt= -Uix+j+& (1) 

where ri is the rate of formation of compo- 
nent i and ui is the characteristic moving 
velocity of component i defined by 

Ui = u/(1 + Ki) (2) 

The boundary conditions at the inlet of 
catalyst bed (z = 0) are as follows: for the 
reactants, 

ci = C&p(l) (3) 

and for the products, 

Ci = 0 (4) 

where p(t) is a shape of inlet pulse and is 
given as a function of time. For a rectangular 
pulse, 

* This assumption is practical under conditions of 
lower concentration in gas phase. In the later paper 
the case of Langmuir isotherm will be treated. 
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at slt20, cp(O = 1 

and at t 2 to, 94) = 0 (5) 

For a triangular pulse, 

at to2t>o, do = t/to 
at 24 2 t 1 to, dt) = 2 - (t/to) 

and at t > 2t0, $40 = 0 (6) - 

And for an error function pulse, 

p(t) = exp{ --?r(t - t’)2/t02) (7) 

Parameter to, pulse width, is defined by 
Eq. (8). 

- do at (8) FIG. 1. 

It follows that the amount of reactant CA(n + 1,m) = 1 - UA Liz !?A(n,?i%) 
injected corresponds to CA’tO. The initial 

(Y) 

AI nr 
condition is, at t = 0, 

ci = 0 (9) 

Conversion, X, and yield of component i, 
Yi, in the pulse technique are obtained by 
integrating the concentration of reactant A 
or product i at the outlet of the catalyst bed. 

In the case of nonlinear reactions these 
equations were solved numerically in the 
following way. Equation (1) means that 
each component moves down the catalyst 
bed with its characteristic moving velocity 
ui during the reaction. For example, the 
differential equations expressing the mass 
balance of reactant A and product R in the 
reversible reaction are 

aCA 8cA 9-A 

at= 
-t&x+- 

1 + KA 
02) 

dcR dcR 7-R 

at= -URX-i+KR (13) 

and the transport of A and R predicted 
from these equations is shown graphically 
in Fig. 1. Replacing the derivatives in 
Eqs. (12) and (13) with the simplest differ- 
ence representations, and rearranging, leads 
to 

+ UA E CA(n,m - 1) + i-& TA(n,m) 
A 

(14) 

cR(n + l,m) = (1 - uRfj)cdntm) 

+ t‘R ; CR(n,m - 1) + i+- TR(%m) 
R 

(15) 

Transport of A and R expected from these 
equations differs entirely from the actual 
movement. In contrast the equations ob- 
tained in the following way express the 
actual movement. Equating w to 2 - UAt, 
one gets 

When this is substituted into Eqs. (12) and 
(13), they become 

(16) 

= -(UR - t&A) &), + eR 

(17) 

Replacing again the derivatives in the 
dimensionless form of these equations with 
the differences and equating AT to A(z/L), 
one gets 
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--Correction of 

Difference 
between 

x and w 

m +l +2 +3 +4 +5 +6 +7 +8 r9 r10 +11 +12 

w=z-u,t 

FIG. 2. 

Transport of A and R predicted by these 
equations is shown graphically in Fig. 2, 
and agrees with the actual behavior shown 
in Fig. 1 in consideration of the relation 
between z and w. When the calculation is 
carried out, the difference between x and w 
must be corrected by transferring Ci at 
w = m to w = m + 1 when t = n(u - l), 
which is represented by the dotted lines at 
t = n(v - 1) in Fig. 2. 

(A) Linear Reaction 

In the previous paper (6), theoretical 
analysis was made on the first order irreversi- 
ble, reversible, and consecutive reactions. It 
was found that in these reactions the same 
result is obtained by the pulse and the flow 
techniques. In the present paper, analysis 
was made on a general linear reaction with 
no other rate process than first order. The 
linear reactions are characterized by the 
ability of addition, that is, a rectangular 
pulse with a pulse width to can be represented 
as the difference between two step functions, 

i.e., p(t) = u(t) - u(t - to), and the re- 
sponse of a rectangular pulse, all, also can be 
equated to the difference between two in- 
dicial responses, i.e., vi(t) = tii(t) - tii(t - 
to). The indicial response #;(t) gets nearer a 
steady state value Yi, with a lapse of time, 
and agrees with it after a long lapse of 
time, t, 

yi = I to om b+b@) - AU - to11 dt / 
1 

[J 

t.+to 
z- 

to 0 
h(t) dt - i_‘: $i(t) dt] (20) 

According to the definition of step function, 
at t > 0, u(t) = 0 and $i(t) = 0. Hence 

t*+to 
#i(t) dt - [$i(t) dt] 

1 

J 

t.+to 
=- 

to Ia $i(t) dt = Yi, (21) 

This equation suggests that when reactants 
are fed as a rectangular pulse the conversion 
of reactants and the yield of products are in 
agreement with those from the flow tech- 
nique. Furthermore Eq. (21) keeps its 
validity in the case of an arbitrary pulse 
shape because an arbitrary pulse is given as 
an assemblage of rectangular pulses in the 
linear reactions. 

(B) Nth Order Irreversible Reaction 

In the irreversible reaction the differential 
equation expressing the mass balance of 
products is not required, and the continuity 
equation for reactant is obtained by sub- 
stitution of the reaction rate expression, 
rA = -kKAnCAn, into Eq. (16), 

dCA 

dt= 

kKA” c 

-1 An 
(22) 

Solving this with an initial condition given 
by Eq. (3) and replacing the term t by 
contact time tiA, the concentration profiles 
of reactant A is obtained (4). For n # 1, 

CA = cA’p(t - 6,)[1 + (n - l)kKAnCAon-’ 
X (cp(t - e,)]“-‘e]l’l-n (23) 

andforn = 1, 

CA = cA’p(t - 6A) exp(-k&8) (24) 
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1 : RECTANGULAR PULSE 

2 : ERROR FUNCTION 

a/L 

FIG. 3. 

Substitution of Eq. (23) into Eq. (10) 
gives for n Z 1, 

x=1-; 
s 

m 
cp(t> 

0 

x [l + (n, - l)kK*“C*O”%{ $0(t) }*--l]l’l--n dt 
(25) 

In the case of the rectangular pulse the 
conversion X, is equivalent to that in the 
flow technique Xr because p(t) = 1. 

x, = Xf = 1 
- [I + (n - ~)~RA”CA~“‘BL]““” (26) 

On the other hand the conversions of the 
triangular pulse X, and of the error function 
pulse X, differ from Xr. Difference between 
Xt and Xt or X, and Xr is mainly due to the 
difference in the initial concentration. If the 
average initial concentration defined by 
Eq. (27) is used instead of the maximum 
concentration of inlet pulse CA”, X,, and X, 
approximately agree with Xr. 

CA0 (o m=- 
J to 0 icp(t>l”dt (27) 

In Fig. 3 a plot of (1 - X) 1/Z versus bed 
length is shown for the half-order reaction. 
In the case of the rectangular pulse the plot 
gives a straight line in agreement with that 
from the flow technique, and in the cases of 
the triangular and the error function pulses 

0.8 

t 0.6 

1 rreversible / 

1 

V 
OO 

I I I I I 
0.2 0.4 0.6 06 1.0 

X/L 

Fro.4. 

the deviation from the flow technique is 
only less than 8% and independent of the 
pulse width. In the first order reaction, as 
reported previously (b), the conversion 
given by Eq. (28) is independent of pulse 
shape and is equivalent to that from the 
flow technique. 

X = 1 - exp(--lcKAOL) 

(C) Ae2R 

(28) 

On substituting the reaction rate expres- 
sions, r~ = -rn/2 = -~&ACA + ~~R2ca2, 
into Eqs. (18) and (19), they were solved 
numerically by a NEAC-2203 digital com- 
puter. As can be seen from Fig. 4, the 
conversions in the pulse technique are over 
those in the flow technique given by the 
lower dashed line, although they must be 
less than that without the reverse reaction 

-1.004 

0.96 I I I I 
0 0.2 0.4 0.6 0.6 1.0 

Z/L 

FIG. 5. 
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x 

ov * 
I j !  I 

0 02 0.4 06 08 1.0 

I/L 

FIG. 6. 

given by the upper dotted line. Figure 5 
shows that the unconverted fraction of a 
rectangular pulse is consistent with those of 
a triangular pulse within 4yc and the latter 
are practically equivalent to those of the 
error function pulse. 

(D) A=R+S 

This reaction was analyzed by Magee (6) 
previously, but the situation is restricted 
because chemical equilibrium is established 
instantaneously. In this paper the more 
general case in which the reaction takes 
place at a finite rate is treated. 

On substituting the reaction rate expres- 
sions, rA = -rR = -rs = -k&ACA + 
IczK&&Cs, into Eqs. (18) and (19), they 
were solved by the computer for ?,&A = us * 
and us # UR. The relation of conversion 
with the length of catalyst bed is shown in 
Fig. 6 and the concentration profiles at the 
outlet of a catalyst bed are shown in 

lo- 
11 A at the Inlet A at the Inlet 

0.8 - II 

0.6 

G 
0.4 -~ 

TIME 

FIQ. 7. 

* kwming ?&A # US the result may remain 
unchanged. 

1.0 - 
‘1 A at the Inlet 

_----- 

/I 

1 A at the Inlet 

0.6 - 2.= 0.1 

0.6 I 

F; 
I: e-s 

04 ~- 
-A 

R 
0.2 ~ 

0 

TIME 

FIG. 8. 

Figs. 7 and 8. The conversions in the pulse 
technique are greater than those in the flow 
technique as in reaction (C), but the devia- 
tion from the flow technique is larger than 
that in (C). Also the effect of pulse shape is 
larger than in (C). The ratios of 1 - Xt to 
1 - X, are in the range of 0.95 - 1.00 and 
those of 1 - X, to 1 - X, are in the 
range of 0.994 - 1.006, as shown in Fig. 9. 

(E)A+B-+R,R+B+=S 

On substituting the reaction rate ex- 
pressions, rA = -~~KAKBCACB, rB = 
-~-KA&$ACB - ~&K&~CB, and rR = 

~IKAKBCACB - JCZKRKBC&B, into Eqs. 
(18) and (19) they were solved by the 
Computer for uA = UB, ‘Us # UB, and Cc0 = 
2cAos The relation between the conversion, 
X, and the yield of R, YE, is shown in 
Fig. 10. YR for the pulse technique is 
larger than that in the tlow technique 

0 0.2 0.4 0.6 0.8 10 

Z/L 

FIG. 9. 
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0.6 

2 

0.4 

I !  I 
0 02 0.4 0 6 0.8 1.0 

X 

Fit. 10. FIG. 11. 

illustrated by the lower dotted line, and 
the deviation from the flow technique 
increases with decreasing pulse width. The 
conversion of A is slightly larger and that 
of B is smaller than in the flow technique, 
and the differences in the conversions 
between the techniques also increase with 
decreasing pulse width. 

(F) A -+ R, 2R + S 

On substituting the rate expressions, rA = 
-~~KACA and TR = ~~KACA - ~~KR~CR~, 
into Eqs. (18) and (19), they were solved by 
the computer. Figure 11 illustrates that Yn 
is larger than that in the flow technique at 
any total conversion, but the difference 
between the resuIts for the techniques is less 
than that in reaction (E). Total con- 
version of A is equivalent to that in the 
flow technique. 

Discussion OF RESULTS 

The results of the present study show that 
kinetic data from the pulse technique are in 
agreement with those from the fiow tech- 
nique in any linear reactions which do not 
involve the rate processes other than first 
order, although it has been known that this 
relation holds for the individual reaction 
models like A + R (1, 2, S), A e R (6) or 
A + R + S (6). 

In the nonlinear reactions, such as (B), 
(C), (D), (E), and (F), there are remarkable 
differences in the results from the tech- 
niques. That is, the reactions (C) and (D) 
can proceed over their equilibrium con- 

versions, and in the reactions (E) and (F) 
the yields of intermediate product R 
obtained by the pulse technique are much 
larger than that for the flow technique. The 
differences are caused mainly by the follow- 
ing three factors: The first is the separation 
of zones due to the difference of moving 
velocities and has the largest effect among 
the three. In the reaction (D) the rate of 
reverse reaction R + S + A falls because R 
once separated from S is impossible to 
react any more. The deviation of the 
conversion increases with the characteristic 
moving velocity ratio v below 2 and then is 
settled, as shown in Fig. 12. The effect of 
pulse width r O on the conversion is re- 
markable in the range of 7. below unity, as 
shown in Fig. 13. In Pigs. 7 and 8, when 
rO = 1 the separation of zone of R from that 
of S is so incomplete that the conversion is 
close to that for the flow technique, but 

“O1m 
0.8 ,------- Irreversible Reaction 

e----m 
0.2 - Flow Technique 

I 
Oo a2 

I I I 
0.4 0.6 0.8 1.0 

V 

FIG. 12. 



PULSE KEACTION TECHNIQVE. I. 121 

irreversible Reaction- 

____----- 

0.2 - Flow Technique 1 
0 1 I I I 

0 0.2 0.4 0.6 0.8 1.0 

z 

FIG. 13. 

when Q = 0.1 the majority of R is separated 
and the conversion is close to that without 
the reverse reaction, and if 70 = 0, all the 
molecules of R will be separated from S and 
the conversion will be equivalent to that in 
the irreversible reaction. Also in reaction 
(E), the rate of the second step reaction 
R + B t S falls because of the separation 
of R from B. It follows therefore that the 
yield of R is larger and the conversion of B 
is smaller than in the flow technique. 
Slightly larger conversion of A is due to the 
low conversion, in other words, the high 
concentration of B. 

The second is the lowering of the con- 
centration of the products owing to the 
broadening of zone observed in reactions 
(C) and (F). Since the product R is formed 
continuously during the passage of the 
reactant through the catalyst bed, the zone 
of R abnormally broadens and the con- 
centration of R lowers, which reduces the 
rate of the reverse reaction of (C), 2R t A, 
and of the second step reaction of (F), 
2R + S, bot’h with the second order kinetics 
in respect to R. The deviation of the 
conversion or the yield from the flow tech- 
nique increases with the characteristic 
moving velocity ratio and with decreasing 
pulse width. 

The last factor leading to the disagree- 
ment in the results from these techniques is 
the initial concentration of pulse. In the &h 
order irreversible reaction the difference by 
this factor can be reduced by using the 
average initial concentration of pulse defined 

by Eq. (~7)~ as mentioned above. In 
reaction (C), A = 2R, the initial concentra- 
tion has a larger effect on the reverse 
reaction rate than on the forward one 
because of the difference in kinetic orders. 
If the pulse width is sufficiently small, the 
reverse reaction can be neglected and the 
pulse shape has no effect on the conversion. 
With increasing pulse width, the role of the 
reverse reaction grows larger so that the 
effect of pulse shape becomes larger. But the 
effect of pulse shape is essentially small in 
this reaction, as shown in Fig. 5. In reaction 
(D), the effect of pulse shape is larger than 
in reaction (C) as shown in Fig. 9. Although 
the initial concentration has a larger effect 
on the reverse reaction rate than on the 
forward one, similarly to reaction (C), the 
shape of the pulse has an effect on the 
separation of zone of It from that of S. The 
triangular and the error fun&ion pulses are 
broader than the rectangular pulse, even if 
they have the same value of lo, and the 
effectiveness of the separation becomes 
small with spreading inlet pulse, which is 
the reason why 1 - Xt is larger than 
1 - X, in the tail part of the catalyst bed, 
as shown in Fig. 9. 

APPLICATION FOR KINETIC MEASUREMENTS 

In the linear reactions, as mentioned 
above, the same results are obtained by both 
pulse and flow techniques, therefore one can 
use the pulse technique in place of the flow 
technique and determine kinetic constants 
in the usual manner by the pulse technique. 
Furt8hermore, if one gets the same conversion 
or product distribut#ion at the injection of the 
various amounts of the reactant, the reaction 
may be regarded as linear. In the nth order 
irreversible reaction the reaction rate con- 
stant can be determined in the following 
way: Plotting (1 - X)l-n against contact 
time, the slope of the resulting line is approx- 
imately equivalent to (n - l)kK~~~~~--l. 
If the shape of the pulse at the inlet of 
catalyst bed is known, the average initial 
concentration of pulse can be determined by 
Eq. (27). Dividing the slope of the above- 
mentioned plot by (n - l)con--l, one gets 
an approximate value of the overall reaction 
rate constant, kKan. 
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In these cases kinetic measurement is 
carried out on the basis of complete or 
approximate conformity of the results from 
the pulse and the flow techniques. On the 
other hand in reactions such as A ti 2R and 
A* R + S, there are remarkable differ- 
ences between the techniques. But if one 
makes the best use of the special character 
of the pulse technique, some new informa- 
tion can be obtained. For example, in the 
reaction A + R + S, by extrapolating the 
pulse width to zero, one can get the con- 
version without the reverse reaction and 
the kinetic constants of the forward reac- 
tion. In the following paper (7), the effect of 
the pulse width on the catalytic cracking of 
cumene was studied by the pulse technique 
with the rectangular pulse, and the activa- 
tion energy of the forward reaction was 
determined in such a manner. Further the 
reaction scheme of diisopropylbenzene for- 

mation was studied using the characteristics 
of the pulse technique. 
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